Virpet Theatre, Spring 2003
Technology Overview

Cheryl Platz, Technical Director
May 6, 2003
Entertainment Technology Center

Carnegie Mellon University
Executive Summary
This document provides a broad overview of the applications and other systems that make up the Virpets Theater experience, and provides specific insight as to how these pieces developed during our 15-week cycle.

We have completed the first semester in a multiple-semester project aimed at creating a permanent technology-based puppetry exhibit for the Pittsburgh Children’s Museum. We started with the basic Virpets architecture – created in the Fall of 2001 – and supplemented it with a guest-facing interface, new functionality, and a new network infrastructure to facilitate further communication of information between terminals. The system is still short of installation-worthy – most notably, it is greatly lacking in the stability and robustness departments – but it provides a firm foundation for continued development efforts towards a Fall 2004 opening date.

Document Outline
1. System Overview

a. Virpets Basics

b. Existing Virpets Codebase (theStage, PuppetMaster, XML editors)

c. The Lithtech Problem

d. Interface Implementation in Director
e. Systems Integration

i. General Notes

ii. System Architecture

iii. Communications
f. Physical Installation Notes

g. Anatomy of Puppets and Worlds
2. Known Shortcomings

a. Graphics
b. Software
c. Robustness

d. Content Creation

3. General Recommendations

a. Graphics Engine
b. Additional Functionality & Usability
c. Physical Installation

Appendix A: Creating a Puppet and Adding a Puppet To the System
Appendix B: Virpets XML Specifications
Appendix C: How to Start the Virpets System (as of May 2003)

Appendix D: Content Pipeline Overview (Virpets & Lithtech Files)
Section 1: System Overview
Virpets Basics
Welcome to Virpet Theatre!

Our mission is to create an entertaining, educational, and robust installation for the Pittsburgh Children’s Museum using the Entertainment Technology Center’s proprietary Virpets software system. This system is slated for permanent installation in the museum’s new wing, with a projected opening date in the Fall of 2004.

The Virpets software system is comprised of two core components:
1. PuppetMaster

a. Allows users to link joints on a puppet with controls on a joystick or other input device, and save those settings if desired.

b. Intercepts input control commands from a joystick or other input device, interprets them based on control settings, and sends them to theStage.

2. TheStage

a. Reads in information about a puppetry scene, interprets it, and displays that scene graphically in real time.

b. Listens to puppetry commands from PuppetMaster applications and moves puppet models accordingly in real time.

The graphical portion of the Virpet Theatre system (theStage) is based on the Lithtech 3.1 engine. Lithtech provides its own tools for converting models and creating worlds according to their proprietary file formats.

In addition, we have created some installation-specific components:

1. Graphical Interface

a. Allows end-users, or guests, to select a specific puppet that they would like to play with.

b. Sends guest selection to helper network applications, which relay those requests to theStage.

2. Virpets Network Agents

a. Reside on both the client (interface computer) and server (theStage computer)

b. Take requests from the interface, interpret them, and relay them to theStage
The information these programs need about the puppets they’re working with is saved in a number of XML documents (see Appendix B: Virpets XML Specifications). Puppets can be added to the system by creating a number of Lithtech files and descriptive documents, and copying those files to all three computers. (For more information, please see Appendix A: Adding a Puppet to the System and Appendix D: Content Pipeline Overview.)
There is also a substantial physical component to the system, including custom-built joystick mounts and three computer systems (2 clients and 1 server.)
Existing Virpets Codebase

The Virpets system is a suite of applications that has been under development at the Entertainment Technology Center since the Fall of 2001.

In October of 2001, Virpets consisted of the following applications:
1. TheStage

a. Graphics/server engine

b. Utilizes Lithtech 3.1 middleware engine

c. Written in C

2. PuppetMaster

a. Input interpreter/client program

b. Written in C

By May 2002, the RIFT project team had expanded and modified both theStage and PuppetMaster to include a range of new functionality, including cameras as puppets, sound triggers, scene changes, and the recording of puppeteering data for later use in playback or layering. A series of utilities for editing the XML configuration files was also created using Visual Basic.

However, after evaluating the options available to us, our team chose to revert to the October 2001 build of the Virpets system. The additions made by the RIFT team were not necessary for the scope of our installation, and those changes also made the system slightly unstable. We felt that our best chance at a robust system was beginning with the sparsest build possible. We did, however, keep the XML utilities they provided.

Major Changes This Semester:

Over the course of the semester, the code in theStage has gone largely unchanged. Among the major modifications:
1. Added a console hook so that SSF file for the show is set in autoexec.cfg

2. Added support for deletion of puppets from LT graphics engine

3. Added support for a “scene reload” from the SSF file – reloads all puppets

These changes were all made to facilitate our desire to swap active puppets without restarting Lithtech. They should not have any impact on system stability.

PuppetMaster was also modified somewhat – the interface was simplified, and several “debug” hooks were added to test the scene reload functionality. We have been trying to make PuppetMaster start from the command line, but this is proving to be more difficult than originally thought.
The XML utilities from last semester were simplified and streamlined, and the VPD editor (Virpets Performance Descriptor) was removed since we lost this functionality when we rolled back to the October 2001 version of the code. The new versions of these utilities are still implemented in Visual Basic.

The Lithtech Problem

Early on, it became apparent that the age of the system was starting to become a factor. Since it was originally written in Fall 2001, the Virpets system uses Lithtech 3.1 – and there have been several major releases of this software package since. The obvious question was “When will we upgrade the system, and what will we gain from it?”

The first few weeks of the semester were spent unsuccessfully trying to get a working build of the Virpets system using Lithtech 3.2. Among the largest benefits to such a change were the ability to change “scenes” or “worlds” multiple times without restarting Lithtech, and a decrease in the prevalence of memory leak bugs (both acknowledged problems in the LT 3.1 software.)

After those weeks of unsuccessful attempts to upgrade the software, we made a conscious decision to remain in LT 3.1. It would suffice as a prototyping graphics engine, and our art team desperately needed a firm answer to the question “Which version of Lithtech should we design for?” Communications from the Children’s Museum also made it clear that world-changing would not be a major issue, and we felt that the rest of the functionality we needed would be there.

Unfortunately, a semester of working with the system under LT 3.1 has been problematic.

· Content production pipeline is undocumented and time-consuming

· Lithtech 3.1 incompatible with recent builds of Maya

· DEdit, ModelEdit are flaky and unstable

· Lighting was consistently poor, despite our best efforts

· Stability and robustness are not yet within our grasp

· Problems appear to lie largely within the heart of the Lithtech engine
· Memory leakage is a known bug in Lithtech 3.1

· Inconsistent behavior and instability in the field

· In user testing, theStage would abruptly go to a black screen and lock up the entire server after anywhere from 1-3 hours, each time requiring a hard reboot.
· Visible evidence of continuous Lithtech memory leakage

· Performance degradation begins almost instantaneously

· After 30 min or so, frame rate is sometimes 12 – 17 fps or worse.

In April, our Doherty Hall setup enjoyed somewhat improved stability – up to 18-20 hours at its best before crashing – but theStage still suffered from a noticeable performance decay after as little as 10-30 minutes running. After a few hours, the performance is sometimes so degraded that a reboot is the only option.
Needless to say, this kind of performance is not acceptable for a permanent installation environment, and it will be a large task for the next group to get past this hurdle. My personal recommendation would be to get rid of Lithtech entirely, if at all possible. At the very least, next semester’s group should again try to convert the Virpets system to LT 3.2 or LT Jupiter, if possible.

However, if Panda 3D is in an acceptable state in September, every effort should be made to migrate. At least Panda’s problems can be solved within the department – Lithtech is an aging beast that we cannot modify, and using it in the permanent installation would leave us in a very bad place. Fortunately, the original authors of the system foresaw such a situation, and the code was written to try and enable replacing the graphics engine. It won’t be trivial, but it should hopefully be possible.
Graphical Interface Implementation

The GUI (graphical user interface) for the Virpets Theatre installation was implemented using Director MX. There were a number of design decisions behind the layout, but those are out of the scope of this document.

The interface loop is as follows:

1. Intro / Category Selection Page

a. Displays categories of puppets and allows choice between them.

b. Dynamic elements: None

2. Puppet Selection Page

a. Displays up to 4 puppet headshots on the left hand side

b. Displays 1 puppet “drill-down” on the right hand side

c. Dynamic Elements: All Puppet-Specific Information/Images

3. Selection Confirmation Page

a. Displays name and full-size image of puppet that you selected

b. Offers basic information about controlling puppets

c. Stays onscreen for approx. 15 seconds

d. Dynamic Elements: All Puppet-Specific Information

Puppet Information

The interface obtains information about puppets by reading an external file: Files/puppetlist.txt. This file is in XML format, and encodes a number of different values including:
· Full Puppet Name, i.e. “Kith Metal Teeth”

· Short Puppet Name for file naming conventions – i.e. “Kith”

· Puppet ID Number/Code for Communicating with Server – i.e. “01”

· Puppet Type, i.e. “Jointed Marionette”

When adding a puppet to the interface, you must create a “headshot” and a “full-body shot” of the puppet and save them according to standard naming conventions. Once those files are in place in the “Images” folder, a puppet will be displayed in the interface if it has an entry in puppetlist.txt when the interface is loaded. Changes to puppetlist require an interface restart.

For more information on how to add a puppet to the interface, please see the related document “Adding a Puppet to the System”.

Network Communications

When a guest clicks on “Click to play with this puppet!” the interface sends this information to the Virpets Network Client Agent running on the same computer. However, since Director doesn’t handle unstructured network communications, this information is enclosed in an HTTP request::
set dummy = getNetText(("http://127.0.0.1:8008/puppetswitch.htm?playerID=" & playerID & "&puppetID=" & puppetID))
where playerID is the number of the puppet this players is controlling (0 or 1, specified in puppetlist.txt) and puppetID is the “code” number that identifies this puppet.

As far as the interface is concerned, we care not if the request is received – we do not wait for confirmation from the client agent before continuing. It is a one-way communications pipeline from the interface to the client agent. Also, at no time does the interface communicate directly with the Server/theStage. For more information on how this network request is handled once it is sent, please see the section on Systems Integration below.
General Code Structure
Since the interface code is in Lingo, and much of it is attached to particular objects, it may be difficult to understand the first few times one looks at it. While most script names are self-explanatory (i.e. PuppetTypeRollover), here are a few notes on the more important scripts.

· BeginSprite

· Runs when interface starts – must be attached to one of the starting sprites

· Initializes all globals

· Loads and initializes XML tree for puppetlist.txt

· GlobalScripts

· Called from multiple locations in the code

· 2 functions:

· categoryClick – loads detail screen when a category is chosen

· headshotClick – reloads “drill-down” on right hand side when a new puppet is selected on the left

· PuppetPlayClick

· Attached to the green “Click to Play” button.

· Handles the network communication and sends interface to confirmation screen.

· ConfirmationTimer

· Handles the “pause” on the Confirmation screen.

· Modify the loop maximum to increase/decrease the delay

· Attached to a frame – change the frame to increase/decrease delay

As often as possible, I’ve tried to stay away from hard-coding member numbers or sprite numbers. When in doubt, check Beginsprite to see if there is a global representing the sprite/member you need. The headshots, however, are referred to by number - since their contents change I have no good way of referring to them.

Dynamic Cast Members

These cast members get their content at run-time – DO NOT delete them or otherwise modify them in any way! (You may move them, however, and the text items may be resized.)

· #24, #26 – Full-Body puppet images on detail screen, confirmation screen

· #44, 45, 46, 47 - “Headshots” for detail screen

· PuppetNameValue, PuppetTypeValue, PuppetNameConfirm – Dynamic text for puppet information (name, type, etc.)

Installation

To install a new version of the interface on the client computers, generate a Projector file, making sure that the “Full Screen” option is checked in the “Create Project/Options” menu. Copy this executable and the contents of the “Files” and “Images” subdirectories to both computers.
Current Screenshots & Behavior
[image: image1.png]Networklnfornation Fow2.0

Ve Sping 08
nt1 Server
Drecoix : 1 [oo
e : ' e
Genthgen : | [

)

@il ngine) ST

Puppemaster e | | Puppemaster Lie
(input Handie \/> Thestage (Input Handie)

Default Screen / Puppet Type Selection:

In line with the Museum’s desires for our puppet presentation, the puppets are divided into three categories: Marionettes, Hand Puppets, and Rod Puppets. Selected pictures of puppets from each category are shown. (These are embedded images.) Clicking on a category brings up a category-specific version of the Puppet Selection screen.

This screen remains up indefinitely until a guest clicks on one of the three categories.

[image: image2.jpg]Virtual Puppet Theater

Pick your favorite puppet and put on a puppet show!
To play, pick a type of puppet by clicking on a picture below.
Marionettes Hand Puppets RodPuppets

Don’t forget to look for the 'Real’ versions of these
puppets -they’re all aroundyouin the museum!!

Puppet Selection Screen
Once a category is selected, the interface moves to the puppet selection screen. Headshots of the puppets (using rendered model images) are shown at right.

 Clicking on a headshot brings up more information about the puppet on the right-hand side of the screen, including a picture of the real version of the puppet and a “name” for the puppet.

If there are more than four puppets, the “More Marionettes” button appears, allowing guests to browse through the collection by clicking. The bottom button returns guests to the intro screen. Clicking on the green button on the right-hand side triggers the next interface state and sends the puppet request to theStage.
[image: image3.jpg]Virtual Puppet Theater

Pick your favorite puppet and put on a puppet show!

Marionettes are puppets that move using strings tied fo their bodies -
like Pinocchio.

W

Click here to go back to the firstscreen.

Pick a puppet!

L]
48]

More Marionettes

Puppet’s Name:
Princess Puppet

Type of Puppet:
Marionette

Puppet Confirmation Screen

Once a guest clicks on the bright green “Click to play with this puppet!” button on the Puppet Selection screen, the interface sends their request across the network and displays a detailed confirmation screen.

A picture of the digital puppet is displayed on the right-hand side of the screen, along with basic instructions and a call-to-action: “Try to put on your own show for your friends and family!”

This screen is displayed for approximately 15 seconds, allowing ample time for kids to read the text and make the connection between their selection and the main puppet stage on the projection screen. After the internal timer expires, the interface returns to the default screen until further guest input is received.
Systems Integration

Software Integration

Rather than risk breaking the network infrastructure of the Virpets system by attempting to modify the functionality as it was provided to us, we opted to add a new communications layer on top of what already existed at the time.
Network communications regarding puppet selection are moderated by two Visual Basic applications:

· Client-Side Network Agent

· Receives and parses HTTP requests from Director interface on same computer

· Sends request specifics to network agent on the stage server computer

· Server-Side Network Agent

· Receives requests from client-side agents on client computers
· Parses requests and consults puppetInformation.txt for puppet information

· Re-writes SSF file to include newly selected puppet

· Sends a “Reload Stage” Puppetmaster packet to theStage, triggering a puppet swap

[image: image4.jpg]Virtual Puppet Theater

Pick your favorite puppet and put on a puppet show!

YouPicked:
Carnival Monkey

Now, look at the puppet stage.
Your puppet is waiting for you!

To control your puppet, use the [
two joysticks in front of you.

Try to put on your own show for
your friends and family!

Have Fun!

At left is a diagram of the network communications scheme as it stands in May of 2003. Note that the server agent rewrites the SSF every time it receives a request: it does not wait for the other client to make a selection. In this way, the clients are completely independent of each other.

The Client and Server apps communicate about puppets using a simple 2-digit “PuppetID”. The server-side app uses a file called “PuppetInformation.txt” to resolve the PuppetID and gain information about the puppet’s VPM, starting scale, and the like.

Example contents of puppetInformation.txt:

PuppetID, VPM, ScaleX, ScaleY, ScaleZ, OrientZ, OrientY, OrientZ, PosY

01, "..\rez\kith.vpm", 1, 1, 1, 0.0, 0.0, 0.0, 70

02, "..\rez\cowboy.vpm", 1, 1, 1, 0.0, 0.0, 0.0, 70

03, "..\rez\monkey.vpm", 1, 1, 1, 0.0, 0.0, 0.0, 70

04, "..\rez\tinman.vpm", 1, 1, 1, 0.0, 0.0, 0.0, 70

05, "..\rez\soldier.vpm", 1, 1, 1, 0.0, 0.0, 0.0, 70

05, "..\rez\bat.vpm", 1, 1, 1, 0.0, 0.0, 0.0, 70

11, "..\rez\mouse.vpm", 1, 1, 1, 0.0, 0.0, 0.0, 70

12, "..\rez\chinese.vpm", 1, 1, 1, 0.0, 0.0, 0.0, 70
Why not simply have the Director interfaces communicate directly with theStage?
· Director does not include general sockets support
· we are tricking it by telling it to request a “webpage” from 127.0.0.1

· We do not want theStage worrying about network connections with another entity
· Client/Server apps are small and easily modified

· Allows changes in puppet communications protocol. i.e. information sent

We did add a “Debug Commands” option to PuppetMaster, allowing the Reset Stage command to be sent via joystick controls for simple testing and debugging.

Physical Installation Notes

The recommended setup for the Virpets system involves three computers – two client computers and a server machine. The server machine is responsible for running the Lithtech graphics engine as well as receiving puppet switch requests from both clients. Meanwhile, the client machines handle the display of the graphical user interface as well as input handling on the joysticks. One of the client machines can also double as a stereo system if a dedicated stereo system is not available.
The distributed 3-machine setup allows each machine to handle a chunk of the workload without requiring complicated graphics drawing schemes. Due to the demands of Lithtech, the server computer really cannot handle running any other graphically-based programs, which is why we need a client computer for each guest.
Server Machine

The server machine will be used to run the graphical engine, and should have an excellent graphics card with adequate onboard memory, as well as plenty of RAM to hedge against the general performance bleed of Lithtech 3.1. The server machine’s display port should be connected to the projector. The only peripherals needed are a keyboard and mouse.

Client Machines

The client computers should be capable of running a Director MX app with other MFC apps in the background – but no less than 500MHz. Ideally, the monitors for the clients should be touch-screen monitors – but if not, a normal monitor can be paired with a mouse or trackball. Both computers should be equipped with speakers.
In addition, each client should be connected to one of the 2 joystick boxes via 2 gameport connectors connected to USB converters. The USB converters should be set to mode setting “3” for best performance. Upon movement, transportation, or installation of the joysticks, software calibration is required via the Windows Control Panel. Make sure that the joysticks are being recognized as some form of joystick and not a gamepad – the gamepad drivers do not allow for full range of motion on the joysticks under normal circumstances.
Network Configuration

All three machines should be connected via a small network hub, but since the system provides no security against rogue or malicious packets, the hub should not be connected to the Internet unless absolutely necessary. In general, the system depends on extremely low latency across the LAN, and an influx of external packets might cause puppet response to become unsatisfactory.

Additionally, all three computers must have fixed IP addresses. Currently, since we do not connect to the Internet, we use the IP addresses the computers used to use as parts of the ETC network.

Software Setup
The Virpets system software should be as follows:

· 2 client machines with the following software:

· For running the experience:

· Copies of the Director interface and relevant files

· Winamp or Windows Media Player

· PuppetMaster

· VirpetsFileManager and VirpetsNetAgents

· (along with the appropriate .dll/.ocx files)

· Installation of theStage, including complete /rez directory

· The following are useful for debugging:

· Microsoft Visual Basic, Lithtech 3.1 (and utilities), Director MX

· 1 server machine with the following software:

· For running the experience:

· Installation of theStage, including complete /rez directory

· VirpetsFileManager and VirpetsNetAgents

· (along with the appropriate .dll/.ocx files)

· For Debugging:

· Microsoft Visual C++, Visual Basic, Lithtech 3.1 (and utilities)

Anatomy of Puppets and Worlds
Virpets puppets are actually an assortment of files that combine to create a coherent puppet model:

· LTA file – Lithtech file that includes animation-specific information such as bones

· LTB file – Lithtech file that must be compiled and includes engine-specific information

· DTX file – Lithtech-encoded texture file

· VPM file – Virpets proprietary file including a list of animatable “joints” and file pointers.

The requirements of our eventual museum installation created some interesting challenges with regard to puppet creation and standardization. We wanted the ability to swap between puppets and maintain a consistent control scheme with a minimum of data transfer and hiccups. This meant standardizing control schemes for puppets with different shapes and skeletons.
[image: image5.jpg]5 Virtual Puppet Mapping Manager - monkey.vpm

Fle Joit Animation Tools

GeneralInfomation
Name: Monkey

Model
Testue (DT}

C:A\Documents and Settings\crp\My Documents\Sping2003Prsject\Vipets2\heStagehrez\modelsh

[EXDocumerts and Selings\oneHy Document=\Sping2003P ectVipel:2\heStag _Browse

Jaints and Animaions:
Avallable nodes

Foot
Bodydown

Bodup

Neck

Head

Fihauider

Fam

Rfoream

Rhand

Lshouider

Lam

Ffosam

Lhand

Ly

Lig

Licreleg

Lioat e

Availble arimations
baseénin

Scene Float o)

Action
€ Rotate
€ Translate

Linis

MN [500
Mex [300

Vector
X
i
uz

Jaints enabled

iotate Bodup X (Bochup]
rotate Bodup Z (Bocyup)
ranslate Foat ¥ (Roat)
ranslate Roat Z (Roat]
otate Head Z [Head)
iotate Head X [Head)
iotate Head ¥ [Head)
(otate Lam ¥ (Laim)
otate Lam Z (Laim]
iotale Ram Y (Faim)
otate Ram Z (Ram)

Arimations enabled

Our solution was to create a standardized Virtual Puppet Mapping for the puppets. A Virtual Puppet Mapping, or VPM, is an XML file used by both PuppetMaster and theStage to obtain information about “joints” on the puppet.

Joints are comprised of a bone or “node” name, a movement type, and a minimum and maximum degree of freedom around a set of axes (or vector). For example:

<joint id="0" node="bodyup" min="-45" max="45" vector="1.0,0.0,0.0" action="rotate" desc="rotate bodyup X"/>

describes Joint 0, which can rotate the “bodyup” bone between -45 degrees and 45 degrees around the X axis. The joint is named “rotate bodyup X”.

Above is a screen capture of the VPM Manager, which can be accessed from the VirpetsFileManager application. Joints can be created by selecting a node, rotation, degrees of freedom, and axis of freedom, then pressing the “->” button to create the joint.

	Standardized VPM Specification

	Joint #
	Movement
	Node
	Axis
	Min
	Max

	0
	Rotate
	Upper Body
	X
	-45
	45

	1
	Rotate
	Upper Body
	Z
	-45
	45

	2
	Translate
	Root
	Y
	-45
	45

	3
	Translate
	Root
	Z
	-45
	45

	4
	Rotate
	Head
	Z
	-45
	45

	5
	Rotate
	Head
	X
	-45
	45

	6
	Rotate
	Head
	Y
	-45
	45

	7
	Rotate
	Left Arm
	Y
	-45
	45

	8
	Rotate
	Left Arm
	Z
	-45
	45

	9
	Rotate
	Right Arm
	Y
	-45
	45

	10
	Rotate
	Right Arm
	Z
	-45
	45

We have created a specification for a standardized puppet VPM, which enables PuppetMaster to use one set of settings to control any puppet. This is possible because PuppetMaster only refers to joints by the joint number – and this means that if all puppets use a consistent joint numbering scheme, controls for one puppet will work for any puppet. The standardized scheme is presented at right.
When using the VPM Manager to create a standardized VPM, keep in mind that the joints must be created in order. If they are created out of order, then the joint numbers will be incorrect, and the VPM will produce undesirable results. If this occurs, you can re-order the joints by hand using a text editor – but keep in mind that joints may not be listed out of order in the XML file or it will crash PuppetMaster. (It must always consist of joint0, joint1,etc. in that order.) Therefore, if you change a joint number manually, make sure you also re-order the joints to reflect the new numbering.
Puppets should also be standardized in approximate size, orientation in the world, and location and orientation of the root pivot point. Take extra care when creating models to make sure that they are sized and oriented correctly before adding a skeleton, because correcting such problems after skeleton creation often leads to significant problems in Lithtech. More details can be found in Appendix A, “Adding a Puppet to the System.”
Virpets worlds are special cases – they are not puppets, but geometry that is added and compiled in the Lithtech DEdit world editor. In order for a world to be loaded in thestage, it must be named in autoexec.cfg as the “worlds” property, and it must also be named in theStage’s Stage Scene File, or SSF.
Please note that you do NOT put puppets into a world using DEdit! Puppets will be loaded into the world by theStage at runtime based on the contents of the SSF file specified in autoexec.cfg.
Stage Scene Files (SSF files) are proprietary Virpets XML files that describe a “scene”, including the Lithtech “world” being used and the puppets that will be loaded into that scene. TheStage uses this file to load the world and to find the VPMs for the puppets it should load into the world. PuppetMaster uses this file as a guide to VPM locations as well. SSFs can also contain information about the IP and port # of the computer running theStage for that world. (The default port number is 6000.)

Since theStage’s SSF changes as puppet selections are made, the only important details are the name of the world and the starting IDs and orientations of the puppets that are named within the SSF file. Since the VPMs are standardized, it does not matter which puppet Puppetmaster thinks it is puppeteering – the commands it sends will be valid for any puppet with a similar VPM.

Example (Standardized) VPM:
<vpm name="CreepySmile" type="model" model="models\\creepysmile\\teeth.ltb" texture="tex\\kith\\teeth.dtx" icon="">

<joint id="0" node="bodyup" min="-45" max="45" vector="1.0,0.0,0.0" action="rotate" desc="rotate bodyup X"/>

<joint id="1" node="bodyup" min="-45" max="45" vector="0.0,0.0,1.0" action="rotate" desc="rotate bodyup Z"/>

<joint id="2" node="Root" min="-15" max="15" vector="1.0,0.0,0.0" action="translate" desc="translate Root X"/>

<joint id="3" node="Root" min="-15" max="15" vector="0.0,0.0,1.0" action="translate" desc="translate Root Z"/>

<joint id="4" node="Head" min="-45" max="45" vector="0.0,0.0,1.0" action="rotate" desc="rotate Head Z"/>

<joint id="5" node="Head" min="-45" max="45" vector="1.0,0.0,0.0" action="rotate" desc="rotate Head X"/>

<joint id="6" node="Head" min="-45" max="45" vector="0.0,1.0,0.0" action="rotate" desc="rotate Head Y"/>

<joint id="7" node="Larm" min="-45" max="45" vector="0.0,1.0,0.0" action="rotate" desc="rotate Larm Y"/>

<joint id="8" node="Larm" min="-45" max="45" vector="0.0,0.0,1.0" action="rotate" desc="rotate Larm Z"/>

<joint id="9" node="Rarm" min="-45" max="45" vector="0.0,1.0,0.0" action="rotate" desc="rotate Rarm Y"/>

<joint id="10" node="Rarm" min="-45" max="45" vector="0.0,0.0,1.0" action="rotate" desc="rotate Rarm Z"/>

</vpm>

Example Stage Scene File:
<scene world="stage_no_column" maincamera="" nickname="" server="" port="">

<puppet id="0" vpm="..\\rez\\chinese.vpm" position="70,70,-15" scale="1,1,1" orientation="0.0,0.0,0.0"/>

<puppet id="1" vpm="..\\rez\\bat.vpm" position="-70,70,-15" scale="1.0,1.0,1.0" orientation="0.0,0.0,0.0"/>

</scene>

Section 2: Known Shortcomings

Graphics Engine
The Lithtech graphics engine does not allow for a great deal of creative sophistication, especially in the realm of environmental design. While polygon counts and texture memory did not prove to be a huge problem during our time working on the system, we had general problems trying to finesse the look and feel of the stage.

Our greatest complaint is the lack of quality lighting controls and engines for Lithtech. We wanted shadows, colorings, and varied light levels – but what we got looked very sterile and flat. This is a problem with many real-time graphics engines, but it was frustrating enough to warrant mention here, and should be considered if a change in engines is feasible down the line.

Software

The user interfaces for our custom applications are still very rough around the edges, despite our hope that we would have time to devote to improving them. In particular, the PuppetMaster interface allows no affordances for right-clicking, dragging, or anything similar. The XML file managers could also use a few more expert-user affordances.

PuppetMaster also lacks a few major bits of functionality that would be extremely useful, but that we did not have time to implement. These include:

- Command-line startup to allow system startup automation

 e.g. puppetmaster.exe “demo1.pms” –server 128.2.213.191 –port 6000

- Multiple joints mapped to a single axis of input control

We currently use 4 concurrent PuppetMasters to simulate this layered behavior

- “Reload Current File” or some similar functionality for when VPMs or SSFs change
Robustness

The use of an outdated Lithtech engine (version 3.1, circa 2001) has left the system in a somewhat unstable state. As it turns out, one of the known problems with LT 3.1 is memory leakage – a problem that is said to be addressed in versions 3.2 and above.
The memory leakage is fairly inconsistent – usually, it manifests itself as a gradual memory burn causing constant performance degradation and eventual crash to black screen. Occasionally, for unknown reasons, the burn happens faster than normal. The system has taken anywhere from 1 hour to 18 hours to crash – but it will crash if it is not manually closed. Generally, after a few (2-6) hours of play, the system’s response to puppetry is so sluggish that a reboot may be desirable even before the crash occurs.

Naturally, this is not acceptable behavior for a permanent museum installation. Ideally, the system would be rid of memory leaks – but in Lithtech, we can’t track them down since we don’t have source code licenses. Even if memory leaks were addressed, the system would ideally stop itself after X hours (6 hours or so) and reboot or restart the application for redundancy.

Even “soft” crashes might be workable by wrapping the application in some sort of Windows service that simply restarts the program when it stops. However, these are not “soft” crashes – these are “hard” crashes that lock up all input and output channels on the computer in question, forcing a manual reboot and human intervention.

The issue of starting the system must also be dealt with in greater depth. Right now, the server is a fairly easy startup – just start the server network agent and then run the stage. However, the two client computers require a more complicated process that includes opening 4 separate PuppetMaster windows, loading and starting each of them, starting Winamp, starting the network agent, and then starting the Director interface. This process cannot be fully streamlined until Puppetmaster runs from the command line, enabling us to use batch files to automate the process. This is an endeavor that we began to investigate but did not have time to implement, and one that should be a high priority early in the next semester.
Content Creation
The Lithtech graphics pipeline is complicated and tedious. Getting worlds to work was fairly time-consuming, and it was difficult to debug when a world was not displaying correctly for some reason. Keeping track of .LTA, .LTB, .and .DTX files across multiple machines proved to be a huge chore. Furthermore, we encountered notable difficulties when going back and standardizing the models to be a consistent size, orientation, and the like – it caused deformation problems when we attempted to animate those models.

Lithtech 3.1 also has compatibility problems with many versions of current modeling software. As it turned out, there were no viable exporters to convert Maya files into the proprietary Lithtech format. Since our artists were more comfortable with Maya, we ended up needing to use a complicated multiple-step process, converting models from Maya to Max and then to Lithtech.
Section 3: General Recommendations

Graphics Engine
In the beginning of the semester, we had hope that perhaps Lithtech 3.1 would be able to satisfy the technical demands of the project. Unfortunately, the stability issues we have encountered since have revealed to us that the current solution is simply inadequate.

If an upgrade path and licenses can be secured, the easiest short-term path would be to upgrade to LT 3.2 or Jupiter and conduct extensive robustness testing to determine the effect of extended use on the memory situation there. However, it should be noted that an upgrade will not be trivial – and if another memory leak is discovered, we will still be powerless to solve the problem, since we do not have a license to modify the engine’s source code. (Even if we did, this would be a risky solution at best.)

Since the beginning of the semester, however, Panda 3D has emerged as a potential alternative to the Lithtech graphics engine. Both provide real-time three-dimensional graphics, but Panda is open-source. While Panda may still exhibit memory leak conditions, we would be able, if desired, to consult the Panda team and perhaps even track down the memory leaks, creating a more robust Panda in the process. Informal conversation with Jesse revealed that the Toontown team was able to track down the memory leaks – but those fixes were not made available with the original source release, since they were considered proprietary. The moral of the story is that the fixes are possible, if given the resources.

Upgrading to Panda would also be a non-trivial task. While the original Virpets developers intended for the engine to be completely modular, there are some places where the code is intertwined. All Lithtech code will need to be removed and new graphics display code for Panda inserted in its place. This will likely take several weeks at best, but it is by no means impossible. The core “Puppet” classes are written independently of the LT engine – and the PuppetMaster code makes no reference to Lithtech at all.
The content production pipeline would also need to be revamped – but in this case, I believe Panda is the front-runner in terms of usability. Since we’re only creating one world and not numerous levels, we do not need extremely sophisticated level-building tools – and Panda, unlike the current version of Lithtech, features support for more recent versions of modeling tools.

In general, my personal recommendation is that the Virpets engineers sit down with the Panda engineers during the first week of the semester in the Fall. The team might try setting up a Panda app for several days to see how long the system can run without crashing – even before integrating Panda with theStage. This quick and dirty test might help guide development early in the semester. If it is at all possible, a port to Panda seems most promising, and should be a high priority.

Additional Functionality
Another high priority for the beginning of next semester is getting the system to a one-click start state, so that a “qualified” developer is not required to be on hand just to start or restart the Virpets system. The main hurdle involved in this task is developing a command-line version of PuppetMaster – a feasible task that simply didn’t end up fitting within the scope of this semester’s development.

On the subject of PuppetMaster, for completeness, here are all of the proposed changes you might consider making to that piece of software (mentioned above in Known Shortcomings) :

- Command-line startup to allow system startup automation

 e.g. puppetmaster.exe “demo1.pms” –server 128.2.213.191 –port 6000

- Multiple joints mapped to a single axis of input control

We currently use 4 concurrent PuppetMasters to simulate this layered behavior

- “Reload Current File” or some similar functionality for when VPMs or SSFs change

Also, keep in mind that that any piece of the system that will be used and seen by Children’s Museum staffers should be more user-friendly. Most of our utilities are bare-bones and lack niceties like right-click functionality and shortcut keys.
A few requests have been made that guests have more control over their music selection. Our group was content to allow the music to play randomly – we just ensured that each selection was under two minutes, because we noticed a strong correlation between length of interaction with the system and song length. However, if song selection is a problem that interests you, some thought might be given to how one might graphically represent song choices as a part of the GUI. (Perhaps it’s just as simple as adding a “Fast-Forward to next song” button next to the joysticks!) In any case, this would require a bit of sneakiness, since only one of the client computers plays the music, so only one guest would have control over this feature. Right now, Winamp handles our music – the interface has no hand in the matter.

During our soft opening, there was also talk of “Recording” and “playing back” puppet performances – perhaps even in a form that could be purchased, taken home, or published on the Web. It should be noted that the version of Virpets we used did not include any recording capabilities. (The RIFT version did, but it sacrificed stability for that functionality.) The solution might be software-based, or perhaps as low-tech as a VCR and a videotape vending machine.

The issue of “voices” and spoken sound has also been tossed around several times. The Children’s Museum does not feel that the presence of a microphone to amplify one’s “voices” for the puppet is very important – and it might even hinder other exhibits in the area, if such sound is too loud. However, it may be worth experimenting with more sophisticated schemes – like microphones and directional speakers or audio domes – in order to encourage vocal storytelling, which has been fairly rare so far.

Finally, it would be extremely useful to have a central utility that, given all of the relevant pathnames and puppet information, could automatically add a puppet to the system. Such a utility might automatically create a standardized VPM (Virtual Puppet Mapping), create an XML entry in “puppetlist.txt” for the Director interface, update “puppetInformation.txt” for the server agent, and copy files into the correct locations.
Physical Installation
One large decision that needs to be made is regarding the type of input device our guests will use to navigate the GUI on the client computers. The joysticks are not viable for input since Puppetmaster must always be running, and PuppetMaster intercepts all joystick commands before they can reach other programs. Our current solution involves trackballs, but the brand of trackballs we obtained has a pair of confusing buttons, and the balls themselves are too small for children to manipulate effectively. Mice are always an option, but that requires finding a large flat surface for the mice to operate on, and mice in general are more fragile and prone to breakage. Ideally, a better, more child-friendly trackball solution can be found.

Another potential solution to the interface input problem is touch screens. I have attempted to make the interface as touch screen friendly as possible – with large buttons that a child’s fingers can easily distinguish. The only major concern with touch screens is the issue of placement relative to the controls. In the current setup, monitors are placed on the back of the joystick mounts, which places them too far back for younger children to reach comfortably. Mounting the touch screens in the table next to the joysticks may be the best – but much more involved – solution in this case.

While they are certainly durable and functional, the joystick mount setup we currently have is meant as a prototype setup. Ideally, the next Virpets team will consult with industrial designers – either from Carnegie Mellon or the Museum – to come up with a more permanent and ergonomic solution to the design problem. Our joystick hardware was purchased from Happ controls, and the joysticks themselves can be removed from the boxes and installed somewhere else. We did wish we could have found a durable Happ control that has Z-axis rotation in addition to the X and Y axis translation, but such devices tend to be more fragile and more expensive.
If, for some reason, more joysticks are required, or you need hardware buttons, sliders, or the like, you will need to investigate a signal box that translates the device input into something recognizable by a PC. Right now, our joysticks output directly to a PC gameport control – but most Happ control devices are more complicated.

Appendix A: Creating A Puppet And Adding it to the System
1. Preliminary Steps

a. Generate the model geometry.

b. Standardize the puppet’s scale and orientation with the other puppets.

c. Create the skeleton and bindings.

i. Keep pivot points and orientations consistent with previous models.

ii. Remember to name ALL joints/bones in the skeleton.

d. Decide on a short filename for the model.

i. This will be used to name files consistently.

e. Find a puppetID not already in use to assign to the model.

i. Used puppetIDs can be found in puppetinformation.txt & puppetList.txt.

2. Export as a Lithtech Model

a. Generate an .LTA and .LTB file with ModelEdit for LT3.1

b. Generate a .DTX for the file’s texture

3. Generate Puppet Pictures for Director interface

a. Create a rendered JPG “headshot” of the puppet

i. Dimensions: 120 x 120 px

ii. Name: “puppet-headshot-modelname.jpg”

b. Create a rendered 253 x 445 pixel TIF “full body” image of the puppet.

i. Dimensions: 253 x 445 px

ii. Name: “puppet-body-modelname.tif”

iii. Use alpha channels to make non-puppet areas transparent.

iv. DO NOT use pure white (255, 255, 255) for the transparent area.

4. Generate Standardized VPM (Virtual Puppet Mapping)

a. Open the Virpets File Manager.

b. Go to Puppet -> Edit VPM File.

c. Select the .lta file and the texture file.

d. Add the following joints in the following order: (all min: -45, max: 45)

i. Rotate Upper Body X

ii. Rotate Upper Body Y

iii. Translate Root Y

iv. Translate Root Z

v. Rotate Head Z

vi. Rotate Head X

vii. Rotate Head Y

viii. Rotate LeftArm Y

ix. Rotate LeftArm Z

x. Rotate RightArm Y

xi. Rotate RightArm Z

e. Save the file.

5. Copy Files to ALL Computers

a. Copy the LTA and LTB to:
theStagePath/rez/models/modelname/

b. Copy the DTX to:

theStagePath/rez/tex/modelname/

c. Copy the VPM to:

theStagePath/rez

d. Copy images to:

theInterfacePath/images (clients only)

6. Update Configuration Files

a. On the Client Machines: interfacePath/files/puppetlist.txt:

i. Add a puppet entry to one of the categories, including the short descriptive text, type of puppet, and the puppet’s modelname as the “name.” Increment the puppetcount for the category in question.

b. On the Server Machine: ServerAgentPath/files/Puppetinformation.txt

i. Add an entry of the form:

PuppetID, VPM, ScaleX, ScaleY, ScaleZ, OrientZ, OrientY, OrientZ, PosY

e.g. -- 02, "..\rez\cowboy.vpm", 1, 1, 1, 0.0, 0.0, 0.0, 70

Appendix B: XML Specifications
The Virpets system uses XML documents to encode critical information about the puppets and transfer it between applications in a standard format. Currently, the three filetypes are:

VPM – Virtual Puppet Mapping

Encodes a mapping between a model’s skeleton and its “joints” or control points

SSF – Stage Scene File

Records a description of a “scene”, including the Lithtech world being used and the

puppets that theStage should load into that world.

PMS – Puppet Master Settings

Records a mapping between joint IDs from a puppet’s VPM file and control axes on selected input devices.

VPM: Virtual Puppet Mapping
(from http://www.etc.cmu.edu/projects/virpets/fileformats/vpm/)

VPM files contain hard and fast mappings between a model and its control points. That is, models have nodes, or bones, and each one can move in different ways. For instance, a hip bone can rotate along all three axes. The VPM file allows one to dictate which axes and translation lines are valid and also how far in each direction can they move using min and max values. Here is an example of a VPM:

<?xml version="1.0" encoding="ISO-8859-1"?>

<vpm name="Whole Damn Family" type="model" model="wdf.ltb" texture="wdf512.dtx" icon="wdf.bmp">

<joint id="0" node="MomNeck" min="-90.0" max="90.0" vector="0.0,1.0,0.0" action="rotate" desc="MomNeck Forward/Back" />

<joint id="1" node="MomNeck" min="-90.0" max="90.0" vector="1.0,0.0,0.0" action="rotate" desc="MomNeck Left/Right" />

<joint id="2" node="MomNeck" min="-90.0" max="90.0" vector="0.0,0.0,1.0" action="rotate" desc="MomNeck Lean Left/Right" />

<animation id="0" name="Toggle Still" />

<animation id="1" name="Toggle Walk" />

</vpm>

NOTE: The “icon” property is obsolete as of this semester, but is still included.
Used By: PuppetMaster, theStage
This filetype can be read and written with the VirpetsFileManager application.
SSF: Stage Scene File
(from http://www.etc.cmu.edu/projects/virpets/fileformats/ssf/)
SSFs contain details of the world and the puppets inhabiting it. They list the name of the world file that will load in the Stage as well as default server information. Also, they hold ids, positions, scales, orientations, and vpm files for all the puppets in the scene. Here is an example of a SSF:

<?xml version="1.0" encoding="ISO-8859-1"?>

<scene world="house" nickname="Rossellini" server="rossellini.etc.cmu.edu" port="6000">

<puppet id="0" vpm="wdf.vpm" position="0,196,-128" scale="0.7,0.7,0.7" orientation="0.0,1.0,0.0" />

<puppet id="1" vpm="yellowlight.vpm" position="0,360,-168" scale="1.0,1.0,1.0" orientation="0.0,0.0,0.0" />

<puppet id="2" vpm="yellowlight.vpm" position="0,360,-170" scale="1.0,1.0,1.0" orientation="0.0,0.0,0.0" />

</scene>
Used By: PuppetMaster, theStage
This filetype can be read and written with the VirpetsFileManager application.
PMS: Puppet Master Settings
(from http://www.etc.cmu.edu/projects/virpets/fileformats/pms)

In combination with a Stage Scene File, this provides a way to record the mappings from controllable model parts to their controls (joystick, midi, etc...) that the user creates. It holds that map as well as the SSF file and puppet VPMs. These files are unique in that different puppeteers can create different ways of controlling the same puppets in the same world. They allow puppeteers to save their own styles. Here is an example of a PMS file:

<?xml version="1.0" encoding="ISO-8859-1"?>

<pms>

<scene file="house.ssf" />

<puppet id="0" vpm="wdf.vpm" />

<map type="0" num="0" channel="0" action="0" object="0" joint="0" />

<map type="1" num="1" channel="1" action="1" object="1" joint="1" />

<map type="2" num="2" channel="2" action="2" object="2" joint="2" />

</puppet>
This filetype can be read and written using PuppetMaster.

PuppetList XML Document

Summary:

The puppetListing specification is used to communicate puppet information to the Virpets Director interface without requiring a code change. The document contains information about shortnames, puppet codes (for communication with thestage), categories, and the like.

Classes:

puppetListing: encapsulation for a puppet information document

 Attributes:

numGroups – number of categories

playerID – corresponds to the puppet number this player is using on theStage

group: encapsulation for a category of puppets (marionettes, hand puppets, etc.)

 Attributes: Name – name of group as it would be displayed in the interface

numPuppets – the number of puppets in this category

puppet: encapsulation for individual puppet information

 Attributes:

name – SHORT NAME used by Director to access images, e.g. “shortname-body.jpg”

fullName – name as it should be displayed in the Director Interface

fullType – type as it should be displayed in the selection dialog (not used to categorize)

code – puppet code, sent to Virpets Network Agents & used to get more puppet info

Example:

<?xml version="1.0" encoding="ISO-8859-1" ?>

<puppetListing numGroups="3" playerID ="1">
<group Name ="Marionettes" numPuppets = "4">

<puppet name="Kith" fullName="Kith Metal Teeth" fullType="Marionette" code = "01"/>

<puppet name="Cowboy" fullName="Cowboy" fullType="Marionette" code = "02"/>

<puppet name="Monkey" fullName="Carnival Monkey" fullType="Marionette" code = "03"/>

</group>
<group Name ="Hand Puppets" numPuppets = "1">

<puppet name="Bob" fullName="Bob the Clown" fullType="Hand Puppet with Rod" code = "11"/>

</group>
<group Name ="Rod Puppets" numPuppets = "2">

<puppet name="Mouse" fullName="Brown Mouse" fullType="Hand Puppet" code = "21"/>

<puppet name="Kith" fullName="Kith Metal Teeth" fullType="Marionette" code = "01"/>

</group>
</puppetListing>
Used By: Virpets User Interface (Macromedia Director MX)

Note: For the puppet codes to work, you must create or update the corresponding entry in puppetInformation.txt, used by the Virpets Network Server Agent.

Appendix C: How to Start the Virpets System (as of May 2003)
To Start the Server Machine:
1. Turn on the projector.

2. Log onto the Virpets account. (Password: children123)

3. Start the Server-Side Network Agent.

a. Double-click on the Server Agent icon.

b. Server will begin listening automatically.

4. Start theStage.

a. Double-click on the “Run theStage” icon.

To Start a Client Machine:
1. Log onto the “For Admins Only” account, password “museum”.

2. Start the client-side Network Agent.

a. Double-click on the “Client Agent” icon.

b. Enter the server IP address (128.2.213.191)

c. Click “Start Server.”

3. Start 2 PuppetMaster sessions.

a. Open 2 PuppetMaster windows.

i. For each window:

1. Double-click on the PuppetMaster Icon.

2. Select “Open PuppetMaster Settings File” from the File menu and open Demo1.pms in one window, Demo2 in the other.

3. Select “VirpetsServer” from the drop-down menu in the lower left hand corner.

4. Click “Start Puppeteering”.

4. Start the background music.

a. On the computer connected to the speakers, open the “Virpets Music” folder.

b. Select everything in the folder, right-click, and select “Play” from the menu.

c. Make sure the player is set to Repeat.

5. Open the Director interface.

a. Double-click on the Interface icon on the desktop.

Appendix D: Content Pipeline Overview
Steps to Creating a Virtual Puppetry World:

1. Create Model & Skeleton

a. Tools: 3DS Max or Maya

b. Output: .LTA

2. Create UV Maps and Textures

a. Tools: 3DS Max, Maya, Deep Paint 3D, Photoshop

b. Output: .LTA

3. Create & Export Lithtech Model Files

a. Tools: ModelEdit (Lithtech)
b. Output: .LTB

4. Specify Available Animations, Joints and Constraints

a. Tools: VPM Manager [Custom]

b. Input: .LTA File

c. Output: Virtual Puppet Mapping (.VPM)

5. Specify Puppet Properties in the World

a. Tools: SSF Manager [Custom]

b. Input: .VPM File(s), Lithtech World File(s) (.DAT)

c. Output: Stage Scene File (.SSF)

6. Assign Joints and Animations to Controls

a. Tools: PuppetMaster [Custom]

b. Input: SSF File

c. Output: PuppetMaster Settings File (.PMS)

7. Begin Puppeteering

a. Tools: PuppetMaster (Input), TheStage (Display)

